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Abstract

Phase inversion in oil–water flow systems corresponds to the transitional boundary between oil-in-water
dispersion and water-in-oil dispersion. In this study, the criterion of minimum of the system free energy is
combined with a model for drop size in dense dispersions to predict the critical conditions for phase in-
version. The model has been favorably compared with available data on the critical holdup for phase in-
version. It also provides explanations of features of phase inversion phenomena in liquid–liquid pipe flows
and in static mixers. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Dispersed flow is a basic flow pattern frequently encountered in gas–liquid or liquid–liquid
systems. Depending on the operational conditions, either of the two fluids involved can form the
continuous phase. In oil–water two-phase flows there are water-in-oil (w/o) or oil-in-water (o/w)
dispersions. Emulsion is a stable dispersion of fine droplets (w/o or o/w), which usually involves
the presence of surfactants inhibiting coalescence of the dispersed droplets.
The phase inversion refers to a phenomenon where, with a small change in the operational

conditions, the continuous and dispersed phase spontaneously invert. For instance, in oil–water
systems, a dispersion (emulsion) of oil drops in water becomes a dispersion (emulsion) of water
drops in oil, or vice versa. This transition is usually associated with an abrupt change in the rates
of momentum, heat and mass transfer between the continuous and dispersed phases and between
the dispersion and the system solid boundaries. Also, the drop size distribution of the dispersed
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phase depends on the type of dispersion. Therefore, a controlled phase inversion is a desirable and
essential step in certain industrial processes. However, an uncontrolled phase inversion has to be
prevented in all processes.
The phase-inversion is a major factor to be considered in the design of oil–water pipelines, since

the rheological characteristics of the dispersion and the associated pressure drop change abruptly
and significantly at or near the phase inversion point (Arirachakaran et al., 1989; Pan et al., 1995;
Angeli and Hewitt, 1996). Also, the corrosion of the conduit is determined to a large extent by the
identity of the phase that wets it.
The inversion point is usually defined as the critical volume fraction of the dispersed phase

above which this phase will become the continuous phase. Studies have been carried out in batch
mixers (e.g. Quinn and Sigloh, 1963; Clarke and Sawistowski, 1978; Selker and Sleicher, 1965;
Norato et al., 1998; Groeneweg et al., 1998), continuous mixers (Tidhar et al., 1986), column
contractors (Sarkar et al., 1980) and pipe flow (Arirachakaran et al., 1989; N€aadler, 1995; N€aadler
and Mewes, 1997), in attempt to characterize the dependence of the critical volume fraction on the
various system parameters, which include operational conditions, system geometry and materials
of construction.
Most of the knowledge on phase inversion phenomenon comes from experiments carried out in

stirred tanks. Selker and Sleicher (1965) defined an ambivalent range as the range of volume
fractions of a phase above which that phase is always continuous and below which that phase is
always dispersed. In the ambivalent range, either one of the two phases can be the dispersed
phase. It is to be noted that the maximal dispersed phase holdup can exceed 74% (corresponding
to maximal packing density of equal size spheres) and can go up to �90% (Pal et al., 1986;
Guilinger et al., 1988). A primary factor which affects the limits of the ambivalent range seems to
be the liquids viscosity ratio. Selker and Sleicher (1965) found that by increasing the oil phase
viscosity, its tendency to be dispersed increases, whereby both the minimal oil volume fraction
that can be continuous and its maximal volume fraction that can be dispersed increase. Also, the
widest ambivalent range was obtained for liquids of about the same viscosities. The ambivalent
range may also be influenced by other factors, such as the stirring speed, the wetting properties of
the container material, liquids densities and surface tension. All these factors, as well as the initial
conditions, were found to have a role in determining the location of the phase inversion point
(within the ambivalent range) in a particular application (Mao and Marsden, 1977; Kato et al.,
1991; Kumar et al., 1991; Kumar, 1996; Norato et al., 1998; Groeneweg et al., 1998; Yeo et al.,
2000).
The tendency of a more viscous oil to form the dispersed phase is indicated by the data on

dispersion inversion in pipe flows. It was found that the water cut required to invert a dispersion
decreases as the oil viscosity increases. Based on the experimental results of various investigators
on phase inversion, Arirachakaran et al. (1989) proposed the following correlation for the critical
water cut, eIw:

eIw ¼ Uws
Um

� �
I

¼ 0:5� 0:1108 log10ðgo=grÞ; gr ¼ 1 mPas ð1Þ

where go is the oil viscosity, Uws is the water superficial velocity and Um is the mixture velocity. For
highly viscous oils (above �0.2 Pa s) a constant value of eIw ’ 0:15 was reported (Brocks and
Richmond, 1994).
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Another empirical correlation was suggested by N€aadler and Mewes (1997). Based on the mo-
mentum equations for stratified flow, assuming a negligible interfacial shear and no-slip between
the two layers, the following equation was obtained:

eIw ¼ 1

1þ k1 Co
Cw

qð1�noÞ
o

qð1�nwÞ
w

gnoo
gnww

ðDUmÞnw�no
h i1=k2 ð2Þ

where D is the pipe diameter, qo;w and go;w are the densities and viscosities of the pure oil and
water phases respectively, Co;w and no;w are the parameters of the Blasius equation for the friction
factor, CRe�n and k1, k2, are empirical parameters. It was suggested that k1 reflects the wall/liquids
contact perimeter, as determined by the in situ configuration, and k2 accounts for the flow regime
in each of the phases. For laminar flow in both phases, and k1 ¼ 1; k2 ¼ 2, Eq. (2) is identical to
the Yeh et al. (1964) model for the phase inversion point: eIw ¼ 1=ð1þ ðgo=gwÞ

0:5Þ. The later was
developed with reference to a configuration of laminar flow in stratified layers, however, its va-
lidity was tested against the critical holdup data obtained in a flask (dispersion prepared by
manual vigorous shaking of specified volumes of an organic and water phases).
In stirred tanks, the breakage of drops is due to the energy introduced into the system and

turbulence created by the impeller. In column contractors and in pipe flows, the breakage forces
are due to turbulent and viscous shear in the flow. In any case, for a stable liquid dispersion, a
dynamic equilibrium between two competing phenomena of drops breakage and drops coales-
cence must be maintained. Depending in the physical properties of the fluids, the coalescence rate
and the drop breakage rate (and the resulting drop size distribution) may be quite different in the
initial dispersion and in the post-inversion dispersion. However, in both dispersions drop
breakage and coalescence rates are in equilibrium.
Since phase inversion is a spontaneous phenomenon, it was proposed that its prediction can be

based on the criterion of minimization of the total energy content of the system (e.g. Luhning and
Sawistowski, 1971; Tidhar et al., 1986). The application of this criterion is, however, dependent
on the availability of a reliable model for characterizing the drop sizes in the initial and post-
inversion dispersions. Such models are challenged by the complexibilities involved in describing
drops dynamic in dense dispersions, and in the case of mechanical mixers, also in a non-homo-
geneous flow field (Hoffer and Resnick, 1979; Gilchrist et al., 1989). Extensive investigations have
been carried out over the years in order to explore the coalescence and break-up processes at both
the micro-scale and macro-scale levels (e.g. Davies, 1992; Pacek et al., 1994; Brocks and Rich-
mond, 1994; Gilchrist et al., 1989). These studies yield models for the collision frequency, co-
alescence efficiency and drop break-up (Shinnar, 1961; Chesters, 1991; Das et al., 1987), and
attempts have been made to predict the critical conditions for phase inversion based on the drop
dynamics as dominated by coalescence process (Arashmid and Jeffreys, 1980; Vaessen et al.,
1996).
This study is motivated by the problem of phase inversion in pipe flows. In a recent paper

(Brauner, 2001) a model for estimating the maximal drop size in dispersed flows has been derived
by extending the Kolmogorov (1949)–Hinze (1955) model for the break-up of droplets in tur-
bulent flow to the case of dense dispersions. This model has been successfully applied for pre-
dicting the critical operational conditions necessary for stabilizing dispersed flow patterns in
gas–liquid and liquid–liquid systems. In this paper, this model is used together with the criterion
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of minimization of the total system energy in order to predict the critical conditions for phase
inversion in pipe flows and in static mixers.

2. Oil–water flow patterns maps

A typical flow pattern map for oil–water systems of EoD ¼ DqgD2=8r � 1 in horizontal tubes is
shown in Fig. 1. Generally, these systems correspond to liquids with a finite density difference and
sufficiently large tube diameter. For such systems, stratified flow with complete separation of the
liquids (S) may prevail for some limited range of relatively low flow rates, where the stabilizing
gravity force due to a finite density difference is dominant. With increasing the flow rates, the
interface displays a wavy character with possible entrainment of drops at one side, or both sides of
the interface (SM). The rate of droplet entrainment at the interface increases with increasing the
liquids flow rates, and various flow patterns, which still involve stratification, may develop. These
include a layer of oil-in-water dispersion above a water layer ðDo=w&wÞ or a layer of water-in-oil
dispersion with a free oil layer ðDw=o&oÞ. Layers ofDo=w andDw=o may coexist ðDw=o&o=wÞ. The lighter
and heavier phases may still be continuous at the top and bottom of the pipe, and are separated by
a concentrated layer of drops at the interface, in that case, a three-layer structure is formed.
Inspection of experimental oil–water flow pattern maps reported in the literature reveals a

general similarity between the sequence of flow patterns observed, but differences in the classifi-
cation of the partially dispersed flow patterns (Brauner, 1998). The changes in the flow structure
with increasing the water and/or oil flow rates may be gradual and the definition of these flow
patterns and the associated boundaries are susceptible to subjective judgment and variations.

Fig. 1. A typical oil–water flow pattern map for horizontal system of EoD � 1: experimental data (Trallero, 1995) and

models for predicting flow patters transition (Brauner, 1998, 2000, 2001). 1—neutral stability boundary for smooth

stratified flow; E—entrainment of oil drops into the water layer; EU—equal velocity of fluids in stratified layers;

LTo—laminar/turbulent transition in the oil layer; 4—H-model, water continuous (Eqs. (5)–(12), ~CCH ¼ 1Þ; 5—H-model,
oil continuous; LTm—laminar/turbulent transition, oil continuous phase.
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Nevertheless, models which consider the stability of the oil–water interface and the stratified flow
structure (Brauner and Moalem Maron, 1992; Brauner, 1998) and the drops entrainment at the
interface (Brauner, 2000) are capable of predicting the evolutions of the above partially dispersed
flow patterns and the locus of transitional boundaries.

2.1. On the application of stratified flow models to phase inversion

Outside boundary 1 (Fig. 1), the linear stability theory predicts that a smooth interface of the
stratified layers becomes unstable (Brauner, 1998). The evolution of interfacial waves gives rise to
drop entrainment. When the water layer moves faster than the oil layer, oil drops are entrained
into the water. Vice versa, with a faster oil layer, water drops are entrained into the oil layer.
Consequently, flow patterns which involve a layer of Do=w are prominent in the zone where
Uw > Uo and those involving a layer of Dw=o are expected in the zone where Uo > Uw (and outside
boundary 1). The conditions associated with Uo ¼ Uw, as obtained via a stratified flow model,
may thus imply transition from a region where entrainment is dominated by the water layer to a
region where entrainment is denominated by the oil layer. It is worth noting that, with no-slip
between the two layers ðUo ¼ UwÞ, the in situ holdup corresponds to the input flow rates ratio.
Using the exact solution obtained for laminar flow between two infinite plates (e.g. Brauner

et al., 1996a), the condition of Uo ¼ Uw corresponds to a critical eEUo given by:

eEUo ¼ ~gga

1þ ~gga
; ~gg ¼ go=gw ð3Þ

with a ¼ 0:5. This solution is in fact identical to the Yeh et al. (1964) model. Their solution for the
critical holdup was derived based on the same stratified flow model with the condition of zero
interfacial shear ðsi ¼ 0Þ. However, for this simple geometry of two infinite plates, the holdup
obtained with si ¼ 0 coincides with that obtained for Uo ¼ Uw. This holdup is compared in Fig. 2a
with the exact solution for eEUo in laminar pipe flow with a plane interface (Brauner et al., 1996a).
As shown in the figure, the conditions of Uo ¼ Uw in pipe flow correspond to higher eo (a ’ 1 for
~gg6 10 and it decreases for g � 10 to a ’ 0:8). The solutions obtained using a two-fluid model
(TF) for pipe flow (Brauner and Moalem Moron, 1989) are also shown in Fig. 2a. The results
obtained depend on the model which is used to define the hydraulic diameters of the two layers.
The FS model denotes the results obtained when the interface is considered as a free surface for
both layers, whereas the SW model refers to the results obtained when the interface in the less
viscous phase (water) is considered as a wall. As shown in the figure, the FS model is a signifi-
cantly better approximation of the exact solution. All these laminar flow models assume a gravity
dominated system, EoD � 1 (plane interface) and predict a critical holdup which is dependent
only on the fluids viscosity ratio.
For turbulent flow in both layers, the effect of the viscosity ratio on eEUo is moderated (Fig. 2b)

and the fluids density ratio is an additional parameter. The results of the turbulent two-fluid
model shown in Fig. 2b imply that:

eEUo ¼ ~gga~qqb

1þ ~gga~qqb
; ~qq ¼ qo=qw ð4Þ

with a ’ 0:3, b ’ 1:15 (a, b obtained by linear regression of ln ð1=e�1o � 1Þ
� �

vs. lnð~qqÞ and lnð~ggÞ).
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Apparently, for laminar flow, the solution for the eEUo is independent on the fluids density ratio.
However, the results shown in Fig. 2a and b correspond to a plane interface between the fluids,
thus are valid for systems of EoD � 1. For ~qq ! 1, EoD ! 0, surface forces become important and
the liquids/wall wetting properties determine the interface shape (Brauner et al., 1996b; Gorelik
and Brauner, 1999). For hydrophilic wall, the water/wall contact area increases and the interface
tends to be concave (when water is the heavier phase). On the other hand, with hydrophobic wall,
the interface is convex, whereby the oil layer contact area with the wall increases. Thus, in systems
of low EoD, the solution obtained for eEUo depends also on EoD (or the density ratio) and the
liquids/surface wettability, which is represented by the contact angle, h (Brauner et al., 1998).
Since, with hydrophilic wall, the water layer is slowed down, eEUo becomes lower. On the other

hand, with hydrophobic wall, the oil layer is slowed down and eEUo increases. Eventually, in
systems of EoD 
 1 (capillary systems), the separated flow configuration is that of a fully eccentric
core-annulus, with water in the annulus when h ! 0 (hydrophilic surface) and oil in the annulus

Fig. 2. Oil holdup (oil cut) corresponding to equal average velocities of oil and water in stratified flow, EoD � 1:

(a) models of laminar stratified flow; (b) two-fluid turbulent model.
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when h ! 180� (Gorelik and Brauner, 1999). The exact solution, for eEUo obtained for laminar flow
in these configurations (Rovinsky et al., 1997) are shown in Fig. 3, in comparison to the exact
solution obtained with a plane interface ðEoD � 1Þ. The results demonstrate the trends predicted
for the variation of eEUo with changing the tube material. However, these trends are opposite to the
effect of the wall material on the critical holdup observed in real phase inversion. Experimental
studies on phase inversion indicate a lower critical eo in hydrophobic container (pipe) surface,
compared to that obtained in hydrophilic container (see, for example, Tidhar et al., 1986).
Although the equal-velocities (EU) line in Fig. 1 implies the location of transition from water-

dominated to oil-dominated drop entrainment, it is not associated with a real phase inversion. The
change in the drop entrainment process is rather gradual and the resulting flow patterns still
exhibit stratification (layer of dispersion and a layer of oil or/and a layer of water). The opposite
trend of the effect of the wall wetting properties on eEUo is an indication that these models, which
are based on stratified flow configuration, are not suitable for describing the critical conditions for
phase inversion (although the model structure seems to be appropriate for correlating phase in-
version data, as will be further shown in Section 3). Obviously, the phase inversion is the
boundary between two fully dispersed flow patterns that are feasible in the flow system: oil-
in-water dispersion and water-in-oil dispersion.

2.2. Dispersed flow boundaries

Fig. 1 shows that eventually, for sufficiently high water flow rates, the entire oil phase becomes
discontinuous in a continuous water phase resulting in an oil-in-water dispersion or emulsion
ðDo=wÞ. Vice versa, for sufficiently high oil flow rates, the water phase can be completely dispersed
in oil phase, resulting in a water-in-oil dispersion or emulsion ðDw=oÞ. It is, therefore, the locus

Fig. 3. The effect of the liquids/surface wetting on the oil cut corresponding to equal average velocities of oil and water

layers in EoD 
 1 systems.
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of the phase inversion curve which ultimately defines the regions of stable Dw=o and Do=w. The
maximal holdup of either stable ðDw=o and Do=wÞ is controlled by the phase inversion phenomena.
The model used to predict the dispersed flow boundaries (4 and 5 in Fig. 1) is the H-model

presented in Brauner (2001). According to this model, a homogeneous dispersion can be main-
tained when the turbulence level in the continuous phase is sufficiently high to disperse the other
phase into small and stable spherical droplets, with a maximal size, dmax smaller than a critical
drop size, dcrit. The H-model consists of an extension of the Kolmogorov (1949)–Hinze (1955)
model for dmax in a turbulent flow field, to account also for the effect of the dispersed phase
holdup, �d. The relevant model equations are herein briefly reviewed.
The Hinze model is applicable for dilute dispersions. It suggests that the maximal drop size,

ðdmaxÞ0, can be evaluated based on a static force balance between the eddy dynamic pressure and
the counteracted surface tension force (considering a single drop in a turbulent field). In dense
dispersions, where local coalescence is prominent, the maximal drop size, ðdmaxÞ�, is evaluated
based on a local energy balance (Brauner, 2001). In the dynamic (local quasi-steady) breakage/
coalescence processes, the turbulent kinetic energy flux in the continuous phase should exceed the
rate of surface energy generation that is required for the renewal of droplets in the coalescing
system. In dilute systems, this energy balance is trivially satisfied for any finite drop size (as the
rate of surface energy generation vanishes for �d ! 0) thus, ðdmaxÞ� < ðdmaxÞ0. However, this is not
the case in the dense system where ðdmaxÞ� > ðdmaxÞ0.
Thus, given a two-fluid system and operational conditions, the maximal drop size is taken as

the largest of the two values:

~ddmax ¼ max ~ddmax
� �

0

~ddmax
� �

�

n o
ð5Þ

where ~ddmax
� �

0
is the (dimensionless) maximal drop size in a dilute dispersion:

~ddmax
� �

0
¼ dmax

D

� �
0

¼ 0:55 qcU
2
cD

r

� ��0:6
qm

qcð1� edÞ
f

 ��0:4
ð6:1Þ

and ~ddmax
� �

�
is the (dimensionless) maximal drop size in a dense dispersion:

~ddmax
� �

�
¼ dmax

D

� �
�

¼ 2:22 ~CCH
qcU

2
cD

r

� ��0:6
qm

qcð1� edÞ
f

 ��0:4 ed
1� ed

� �0:6
ð6:2Þ

where ~CCH is a tunable constant, ~CCH ¼ Oð1Þ and f is the wall friction factor. For instance, Blasius
equation ðf ¼ 0:046=Re0:2c Þ yields:

~ddmax
� �

0
¼ 1:88 qcð1� edÞ

qm

 �0:4
We�0:6c Re0:08c ð7:1Þ

~ddmax
� �

�
¼ 7:61 ~CCHWe�0:6c Re0:08c

ed
1� ed

� �0:6
1


þ qd

qc

ed
1� ed

��0:4
ð7:2Þ

where Rec ¼ qcDUc=gc and Wec ¼ qcU
2
cD=r (subscript c denotes the continuous phase). The

H-model is applicable provided:
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1:82Re�0:7c < ~ddmax < 0:1 and Rec > 2100 ð8Þ
For a homogeneous dispersion, applying the no-slip model yields the in situ holdup and the

mixture density, qm in terms the superficial velocities of the dispersed and continuous phases
(Uds ¼ Qd=A, Ucs ¼ Qc=A):

ed ¼
Uds

Uds þ Ucs
; Uc ¼ Ud ¼ Uds þ Ucs � Um ð9:1Þ

qm ¼ edqd þ ð1� edÞqc ð9:2Þ
The critical drop size, dcrit is taken as:

dcrit
D

¼ min dcr
D

;
dcb
D

� �
ð10Þ

where dcr represents the maximal size of drop diameter above which drops are deformed and
thereby enhancing coalescence (Brodkey, 1969):

~ddcr ¼ dcr
D

¼ 0:4r
j qc � qd j g cos b0D2

" #1=2
¼ 0:224

ðcosb0Þ1=2Eo1=2D

ð11:1Þ

EoD ¼ DqgD2

8r
; b0 ¼ jbj jbj < 45�

90� jbj jbj > 45�

�
ð11:2Þ

and dcb is the maximal size of drop diameter above which migration of the drops towards the tube
walls due to the buoyant forces takes place (Barnea, 1987):

~ddcb ¼
dcb
D

¼ 3
8

qc
jDqj

fU 2
c

Dg cosb
¼ 3
8
f

qc
Dqg

Frc; Frc ¼
U 2
c

Dg cos b
ð12Þ

with b denoting the inclination angle to the horizontal (positive for downward inclination). The
criterion ~ddmax6 ~ddcrit, with Eqs. (5) and (10), yield a complete transitional criteria to dispersed
flows. When the fluids’ flow rates are sufficiently high to maintain a turbulence level where
dmax < dcr and dmax < dcb, spherical non-deformable drops are formed and the creaming of the
dispersed droplets at the upper or lower tube wall is avoided. Thus, the dispersed flow pattern is
stable.
Boundary 4 in Fig. 1 corresponds to the results of the H-model when applied with water as the

continuous phase, Ucs � Uws (oil is dispersed, Uds � Uos), whereas boundary 5 is obtained when
the H-model is applied with oil as the continuous phase Uds � Uos (water is dispersed, Ucs � Uws).
It is worth noting that for the critical flow rates along boundary 4, the mixture Reynolds number
is already sufficiently high to assure turbulent flow in the water. However, when a viscous oil
forms the continuous phase, the locus of the transition to Dw=o may be constrained by the minimal
flow rates required for transition to turbulent flow in the oil (Rec ¼ 2100 along boundary LTm).
The required turbulent dispersive forces exist only beyond the LTm boundary, which therefore
forms a part of the Dw=o transitional boundary.
Inspection of Fig. 1 indicates that when water is considered to form the continuous phase there

is a minimal value of the critical water superficial velocity Uo
ws ðUws for Uos ! 0Þ required for

establishment of Do=w. However, there is a maximal U �
ws above which the dispersion stability
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criterion implies a stable Do=w, irrespective of the oil flow rate. Similarly, when the oil is considered
to form the continuous phase, Uo

os corresponds to the minimal critical oil flow rates for obtaining
Dw=o, whereas U �

os corresponds to the maximal oil flow rate below which a flow pattern other than
homogeneous Dw=o may exist. Thus, for Uos > U �

os and Uws > U �
ws, the flow pattern is dispersed

flow. In this region, the flow patterns of dispersion of water-in-oil ðDw=oÞ and dispersion of oil-
in-water ðDo=wÞ share a common boundary.
The critical conditions for the establishment of homogeneous dispersion of either oil-in-water

(boundary 4) or water-in-oil (boundary 5 and LTm) are depicted also in Fig. 4, in terms of the
critical oil cut as function of the critical mixture velocity (Fig. 4a) or the critical Weber number of
the continuous phase, Wec ¼ qcU

2
mD=r (Fig. 4b). These coordinates are conventionally used in

studies of phase inversion phenomena in mixers. In mechanically agitated vessels, the impeller
r.p.m, NI is used for the abscissa and the corresponding dimensionless parameter is We ¼
qcN

2
I D

3
I=r, where DI is the impeller diameter (Um is the analogue of DINI). In Fig. 4, the two

transitional boundaries (curves 4 and 5) that consider the dispersion stability from a dynamical
point of view define four zones:

• Zone I—in which the oil cut and the mixture velocity are such that a homogeneous dispersion
of the liquids (both Do=w and Dw=o) is unstable. Other flow patterns must exist.

Fig. 4. Fully dispersed flow pattern boundaries: (a) Oil cut vs. mixture velocity; (b) Oil cut vs. Weber number of the

continuous phase.
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• Zone II—in which the oil cut and the mixture velocity are such that only water can exist as a
homogeneously dispersed phase (oil is continuous).

• Zone III—in which the oil cut and the mixture velocity are such that only oil can exist as a ho-
mogeneously dispersed phase (water is continuous).

• Zone IV—where either phase can be homogeneously dispersed. Boundaries 4 and 5 provide an
upper bound on the width of the ambivalent range.

In Zone IV, the dispersion stability criterion, which is based on dynamical considerations and
successfully predicts the transition from dispersed flow to other flow patterns, suggests that both
Do=w and Dw=o are meta stable. This implies that an additional criterion is required to determine
which of the two configurations is the actual pattern expected in the flow system. It is suggested
that in this zone, the criterion of the local minimum of the system-free energy can be useful for
predicting the conditions under which dynamically stable Do=w will invert into Dw=o or vice versa.
This inversion will take place in the presence of finite disturbances which are inherent in turbulent
flowing systems.
The analysis is performed assuming both the initial dispersion and post-inversion dispersion are

homogeneous (with no-slip between the two phases). The drop size and the distance between
adjacent drops are considered small compared to the scales used to define the characteristic
mixture volume, where local equilibrium is assumed. It is further assumed that compressibility
effects are negligible and the temperature is constant, thus, the mixture density (and the system
potential energy) is invariant under phase inversion.

3. Phase inversion model

Given a two-fluid (say, oil–water) system and the operational condition, the comparison be-
tween the system free energy should refer to two possible configurations of oil dispersed in water
ðDo=wÞ or water dispersed in oil ðDw=oÞ. For each of these two configurations, the total free energy
consists of the sum of the continuous phase free energy, the dispersed phase free energy and
the free energy of the interfaces (formed between the oil and water phases and between the
continuous phase and the solid surfaces). Under conditions where the composition of the oil phase
and water phase and the system temperature are invariant with phase inversion, the free energy of
the oil phase and water phase remain the same. Thus, only the free energies of the interfaces have
to be considered.
The surface energy (per unit volume of the mixture) due to the oil–water interface, Eow, is given

by:

Eow ¼ edr
p
R dmax
0

d2ðdN=ddÞdd
p
6

R dmax
0

d3ðdN=ddÞdd
¼ 6red

d32
ð13Þ

where r is the oil–water surface tension, N is the number of drops with a diameter greater than a
specified value d, and d32 is the Sauter mean drop diameter.
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For oil-in-water dispersion, the total surface energy, Es is thus given by:

ðEsÞo=w ¼ 6reo
ðd32Þo=w

þ srws ð14Þ

where ðd32Þo=w is the Sauter mean diameter in Do=w;rws is the water–solid surface tension coefficient
and s is the solid surface area per unit volume. For flow in a smooth pipe, s ¼ 4=D. Similarly, for
water-in-oil dispersion, the total surface energy is:

ðEsÞw=o ¼
6rð1� eoÞ
ðd32Þw=o

þ sros ð15Þ

where ðd32Þw=o is the Sauter mean diameter in Dw=o, and ros is the oil–solid surface tension co-
efficient. Eqs. (14) and (15) assume that the solid surface is completely wetted by the continuous
phase.
In view of the physical interpretation and assumptions given above, the flow pattern will be a

Do=w under the conditions where such a dispersion is dynamically stable (the criterion dmax < dcrit is
satisfied) and ðEsÞo=w < ðEsÞw=o. On the other hand, a Dw=o will be obtained when such a dispersion
is dynamically stable and ðEsÞw=o < ðEsÞo=w. The phase inversion phenomenon is expected under
the critical conditions where both Do=w and Dw=o are dynamically stable and the sum of surface
energies obtained with either of these two configurations are equal:

6eo
r
d32

� �
o=w

þ srws ¼ 6ð1� eoÞ
r
d32

� �
w=o

þ sros ð16Þ

Note that, the difference between the rate of turbulent energy dissipated in the pre- and post-
inversion dispersion results in a different characteristic drop size, hence different surface free
energy. Using the Young’s equation, ros ¼ rws þ r cos h, Eq. (16) can be rearranged to yield the
critical oil holdup in terms of the liquid–solid surface wettability angle, h:

eIo ¼
½r=d32�w=o þ s

6
r cos h

½r=d32�w=o þ ½r=d32�o=w
ð17Þ

where 06 h < 90� corresponds to a surface which is preferentially wetted by water (hydrophilic
surface), whereas for 90� < h6 180� the oil is the wetting fluid (hydrophobic surface).
The Sauter mean drop size can be scaled with reference to the maximal drop size, d32 ¼ dmax=kd,

where kd is a constant which depends on the fluids system, kd ’ 1:5–5. It is worth noting that in a
recent review by Azzopardi and Hewitt (1997), it has been suggested that the experimental value
obtained for kd may depend on the sample size and for a large number of drops in a sample its
value saturates at kd ’ 5. Using such a scaling, models for dmax in Do=w or Dw=o can be used in Eq.
(17) to evaluate the critical oil holdup at phase inversion. For instance, under conditions where
the oil–water surface tension in the pre-inversion and post-inversion dispersions is the same (no
surfactants or surface contaminants are involved), ðkdÞo=w ’ ðkdÞw=o and solid–liquid wettability
effects can be neglected (h ¼ 90� or s ! 0, as in large diameter pipes, where do; dw 
 D), Eq. (17)
yields:

eIo
1� eIo

¼ do
dw

ð18:1Þ
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or

eIo ¼
do=dw

1þ do=dw
ð18:2Þ

where do and dw represent the maximal drop size in Do=w and Dw=o respectively. Thus, if do ¼ dw,
the critical holdup for phase inversion would be 50%. However, the drop size in both dispersions
would be the same only if the physical properties of the two liquids are identical, in particular
~qq ¼ qo=qw ¼ 1 and ~gg ¼ go=gw ¼ 1 (in addition to the above stated assumptions). In order to
evaluate eIo for ~qq 6¼ 1 or/and ~gg 6¼ 1, models for do and dw in dense dispersions, as commonly en-
countered at phase inversion, are required. To that aim, ðdmaxÞ� of the H-model (Eq. (7.2)) is
employed.
For Do=w, Eq. (7.2) yields:

~ddo ¼ 7:61 ~CCH
r

qwDU 2
m

� �0:6 qwUmD
gw

� �0:08 qw
qm

� �0:4 e0:6o
ð1� eoÞ0:2

ð19:1Þ

whereas for Dw=o Eq. (7.2) reads:

~ddw ¼ 7:61 ~CCH
r

qoDU 2
m

� �0:6 qoUmD
go

� �0:08 qo
qm

� �0:4 ð1� eoÞ0:6

e0:2o
ð19:2Þ

When the ratio of do=dw is of concern, the details of the pipe geometry, the mixture velocity and
surface tension (assumed constant) cancel out, whereby:

do
dw

¼ qo
qw

� �0:12 go
gw

� �0:08 eo
1� eo

� �0:8
ð20Þ

Combining (20) with (18.1) and (18.2) yields:

eIo
1� eIo

¼ ~qq0:6~gg0:4 ¼ ~qq~mm0:4 ð21:1Þ

or

eIo ¼
~qq~mm0:4

1þ ~qq~mm0:4
ð21:2Þ

where ~mm is the kinematic viscosity ratio, ~mm ¼ mo=mw.

4. Model results and discussion

4.1. Comparison with experimental data

Eqs. (20) and (21.2) provide an explanation for the observation made in many experimental
studies, that the more viscous phase tends to form the dispersed phase. For a given holdup, and in
the case of viscous oil, the characteristic drop size in Do=w is larger than in the reversed config-
uration of Dw=o. Hence, a larger number of oil drops must be present in order that the surface
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energy due to the oil–water interfaces would become the same as that obtained with the water
dispersed in the oil. Therefore, with ~qq~mm0:4 > 1, eIo > 0:5, and eIo ! 1 as ~qq~mm0:4 � 1. The larger is the
oil viscosity, the wider is the range of the oil holdup, 06 eo < eIo, where a configuration of oil
drops dispersed in water is associated with a lower surface energy. In this range of holdups, the
flow pattern will be Do=w if the operational conditions are in range where the dynamic stability
criterion is satisfied (regions III and IV in Fig. 4). Whereas, Dw=o will be obtained in the range of
eIo6 eo6 1, provided such a dispersion is dynamically stable (regions II and IV in Fig. 4). For the
oil–water system shown in Fig. 1, Eqs. (21.1) and (21.2), yields eIo ’ 0:78, which defines the zones
of Do=w and Dw=o within region IV in Fig. 4 (see also Fig. 7).
For equal density liquids, Eqs. (21.1) and (21.2) is practically the same as Eq. (3) or (4). In Eq.

(3) (and in Yeh et al. (1964) model), the power of the viscosity ratio is 0.5. Incidently, the same
power (0.5) can be obtained also with the present model: if the friction factor correlation
f ¼ 0:079=Re0:25c is used in Eq. (6.2), the resulting power of Rec in Eqs. (7.1) and (7.2) is 0.1, and
the critical holdup for phase inversion would read:

eIo ¼
~qq0:5~gg0:5

1þ ~qq~gg0:5
¼ ~qq~mm0:5

1þ ~qq~mm0:5
ð22Þ

With ~qq ¼ 1, Eq. (22) is identical to Yeh et al. (1964) model, although its derivation is based on
completely different physical picture and arguments. It is further of interest to note, that in order
to validate their model, Yeh et al. (1964) did not use a flow system. In their experiments, the
liquids dispersions were produced in manually shaken 50 ml flasks. The liquids’ density ratio has
not been considered as a relevant parameter and was not reported. However, the density of the
liquids used in those experiments is available from the International Critical Tables (1928) and
the Handbook of Chemistry and Physics (1984). Using Yeh et al. (1964) data and considering the
exponents of ~qq and ~gg in Eq. (22) as parameters linear regression of ln½1=eIw� as function of lnð~ggÞ
and lnð~qqÞ yields the following equation:

eIo ¼
~qq0:37~gg0:3

1þ ~qq0:37~gg0:3
ð23Þ

Consulting the 95% confidence intervals on the parameter values indicates that the exponent of
the density ratio is not significantly different from zero (0:37� 0:86). Ignoring the density ratio in
the regression model results in a minor change of the viscosity ratio exponent (0.296 instead of
0.3) with no change of the variance. Indeed, in liquid–liquid systems, where ~qq ¼ Oð1Þ, the effect of
this parameter on the critical holdup may not be very significant (considering the scatter of the
data). It is also worth noting that exponent of ~qq in Eq. (20) results from the combined effects of
three dimensionless groups on the critical drop size (Rec, Wec and ~qq in Eq. (7.2)). Minor changes in
the exponents of these dimensionless groups may change the net trend of the dependence of eIo on
the density ratio (for instance, if the Wec exponent is 0.5 (instead of 0.6), the effect of ~qq in Eq. (22)
cancels out). Therefore, the effect of ~qq as indicated by the model equations may not be robust. On
the other hand, the trend predicted for ~gg is robust and reflects the decrease of the drop size with
increasing the viscosity of the continuous phase (represented by a positive exponent of Rec in
Eq. (7.2)).
The model developed here implies that a detailed information of the (homogeneous) flow field

which produces the dispersions, may not be essential for predicting the critical holdup. For
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instance, the intensity of the manual mixing in a flask may not be well controllable. However, as
long as the turbulence in the flask is sufficiently intense to provide dynamically stable dispersions,
and the container is large enough to diminish solid–liquids wettability effects, the nature of the
dispersion (either Do=w or Dw=o) is determined by the fluids physical properties, whereas the effect
of the flow field on the critical holdup practically cancels out.
Fig. 5a shows a comparison of the critical oil holdup predicted via Eq. (21.2), with experimental

data of phase inversion in pipe flow reported in the literature (Malinowsky, 1975; Laflin and
Oglesby, 1976; Oglesby, 1979; Arirachakaran, 1983; Martinez, 1986). These data were obtained
for oil–water flow in pipes of D ¼ 0:03 and 0.04 m, ~qq ¼ 0:825–0:87 and ~gg ¼ 4:9–1450. The data
corresponding to laminar flow in the oil phase is also included in the figure, although the present
model considers turbulent flow in the continuous phase for characterizing the drops size. How-
ever, since mechanical pre-mixing was used for introducing the viscous oils into the system
(Arirachakaran, 1983), the dispersion characteristics were probably determined at the pre-mixing

Fig. 5. Comparison of the models predictions with experimental data of the critical oil cut in pipe flow: (a) turbulent

and dense Dw=o, Eq. (21.2), (b) turbulent and dilute Dw=o, Eq. (25.2).
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stage. These data were used by Arirachakaran et al. (1989) to obtain their experimental corre-
lation, Eq. (1) (line 3 in Fig. 5a). A lower variance is however obtained by correlating the data
using the form of Eq. (21.2). The best fit (curve 4 in Fig. 5a) indicates an exponent of 0.22 for ~gg
(when only turbulent oil data is used the exponent is 0.27, the exponent of ~qq is again not sig-
nificantly different from zero). This implies that the form of Eq. (21.2), which is based in mech-
anistic considerations, is more suitable for correlating experimental data.

4.2. Phase inversion to dilute water-in-oil dispersions

As the viscosity ratio increases, the critical oil holdup increases and reaches high values. Eq.
(21.2) predicts that for ~gg � 1; eIo ! 1. However, for high critical oil holdup, the water-in-oil
dispersion is, in fact, dilute. According to the model suggested for evaluating the characteristic
drop size, dmax ¼ maxfðdmaxÞo; ðdmaxÞ�g. Thus, in dilute Dw=o, ~ddw in Eqs. (18.1) and (18.2) (and Eq.
(17)) is evaluated based on Eq. (6.1) (instead of Eq. (6.2)). In this case, Eq. (20) should be replaced
by:

do
dw

¼ 4:0 ~CCH
qo
qw

� �0:12 go
gw

� �0:08 eo
1� eo

� �0:2
ð24Þ

Substituting in Eq. (18.1) yields:

eIo
ð1� eIoÞ

¼ 4 ~CCH~qq0:15~gg0:1 ð25:1Þ

eIo ¼
4 ~CCH~qq0:15~gg0:1

1þ 4 ~CCH~qq0:15~gg0:1
ð25:2Þ

Eq. (25.2), which is the equivalent of Eqs. (21.1) and (21.2) indicates that for for high ~gg, the
critical oil holdup becomes practically independent on the viscosity ratio. It is to be noted that the
switch between Eqs. (21.2) and (25.2) depends also on the value of the constant ~CCH. This is
demonstrated in Fig. 5b. A value of ~CCH ’ 0:5 brings the model predictions closer to the cluster of
the experimental points in the range high viscosity ratios. The predicted trend is also in accor-
dance with experimental evidences indicating that for highly viscous oils the critical holdup sat-
urates at a value of eIo < 1 (e

I
o ’ 0:85, e.g. Brocks and Richmond, 1994). Similar considerations are

to be applied when ~gg 
 1, where the critical holdup at phase inversion corresponds to dilute Do=w.
Consequently, the approach of eIo to zero in the limit of ~gg ! 0, is predicted to be much more
moderate than that implied by Eq. (21.2).
Although the experimental data is scattered, the trends shown in Fig. 5 substantiate the ap-

plicability of the suggested model for predicting the effect of the oil–water viscosity ratio on the
critical holdup. It is also to be noted that the model predictions shown in Fig. 5 correspond to
h ¼ 90� (or s ! 0, negligible liquids/solid-surface wetting effects) and surface tension which is
invariant with phase inversion. It will be shown below that when these factors are also considered
in the model, the resulting critical holdup for phase inversion is associated with the existence of an
ambivalent region, as may be implied by the scattered data in Fig. 5.
For very highly viscous oils, models which are based on turbulent flow with the oil as

the continuous phase may be of a limited practical relevance. Therefore, the model given in
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Eqs. (21.2) and (25.2) may also be irrelevant for evaluating the drops size of water dispersions in
highly viscous oil. Relevant models are those which consider drops deformation and splitting
under the action of viscous shear. Such models introduce the capillary number of the continuous
phase, gc Uc=r as a dominant parameter instead of the Wec. On the other hand, the Ohnesorge
number plays a role in systems of high gd and/or low surface tension (see Appendix A).

4.3. Ambivalence due to surface rewetting or contaminants

Although the principle of minimization of the system free energy defines a single inversion
curve, some ambivalence may still exist around this curve. This ambivalence is herein attributed to
processes that follow phase inversion and have a significantly longer time scale (e.g. surface
rewetting or diffusion). The resulting ambivalent region is a sub-region of the larger ambivalent
zone where both dispersion configurations are meta-stable (zone IV in Fig. 4).
In general, the difference in the wettability of the solid surface by the liquids should be con-

sidered in small diameter tubes. Under conditions where the surface energy due to the liquid/solid
contact is not negligible, the solution for the critical holdup as obtained by Eq. (17) depends on
additional parameters, which include the mixture velocity, the tube diameter, surface tension and
liquids/solid wettability angle. The calculation of the critical holdup also requires a value for kd.
The effect of surface wettability is rather small in pipeflow but it is very significant in static mixers
(see Section 5).
As indicated by Eq. (17), a hydrophobic surface (cos h < 0) affects a reduction of the critical

holdup of the organic phase, whereas with hydrophilic surface (cos h > 0), the critical holdup of
the organic phase increases. The effect of the fluids/solid wetting is more pronounced for larger
d=D, thus, in a given system, for lower Um. This is demonstrated in Fig. 6 using the same oil–water
system studied in Figs. 1 and 4. The results in Fig. 6 were obtained for the case in which the liquids
surface tension is invariant with phase inversion and kd ¼ 2:5 ð ~CCH ¼ 1Þ.
The upper curve in Fig. 6 corresponds to the inversion curve obtained when the tube surface is

ideally wetted by water ðh ¼ 0Þ. The lower curve corresponds to the inversion curve for a surface

Fig. 6. Region of ambivalence as affected by a change in the liquids/wall wetting-effect of the mixture velocity and

contact angle on the critical oil cut for the oil–water system of Fig. 1, ( ~CCH ¼ 1, kd ¼ 2:5Þ.
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which is ideally wetted by the oil ðh ¼ 180�Þ. As shown, the effect of the wetting characteristics is
more significant at lower mixture velocities. For sufficiently high Um (high Wec), both curves
approach the constant critical holdup obtained for cos h ¼ 0.
In view of Fig. 6, independently of the surface wetting characteristics, the preferred configu-

ration is water-in-oil dispersion above the upper curve and oil-in-water dispersion below the lower
curve. In the region between these two curves, either of the dispersions may exist depending on the
liquids wettability. It is to be noted, however, that from the practical point of view, the time scale
for complete rewetting of the wall after the inversion (which requires the removal of the old
continuous phase film) is much longer than the time scale of the inversion. Consequently, addi-
tional meta-stable states (regarding the effective wettability) that are long-lived compared to the
time scale of the inversion process are to be considered while applying the principle of the min-
imization of the system free energy. Start-up procedure and entrance conditions may also affect
the effective liquid/surface wettability and thus, the critical conditions for phase inversion. For
instance, starting with water as a continuous phase, the wetted tube surface may be considered as
practically hydrophilic. In this case, with increasing the oil cut, Do=w is first obtained, which inverts
to Dw=o along the upper curve. Vice versa, once oil is the continuous phase, in order to invert the
Dw=o back to Do=w, it may be required to reduce the oil cut until the lower inversion curve is
reached. Thus, an ambivalent region evolves that is associated with the existence of a hysteresis
effect in the phase inversion phenomenon.
Combining Figs. 4 and 6 provides the final definitions of the regions where either Do=w or Dw=o

are expected (Fig. 7). The wide ambivalent Zone IV in Fig. 4, where both a Do=w and Dw=o have
been predicted to be stable flow patterns (in view of dynamical considerations) is splitted by the
inversion curves into three sub-zones: Do=w, Dw=o and an narrower ambivalent region. The sub-
zone of Do=w merges with Zone III in Fig. 4 to define the operational conditions where the flow
pattern is predicted to be Do=w, whereas the sub-zone of Dw=o merges with Zone II to define the
region of Dw=o. The remaining part of the ambivalent region of Fig. 6 is limited to a narrow range
of oil-cut in Fig. 7. In this region, intermittent appearance of the two type of dispersions was
observed in the pipe flow (Arirachakaran et al., 1989).
The effect of the liquids viscosity ratio on the ambivalent region due to surface wetting effects is

demonstrated in Fig. 8. At a constant Um, as the viscosity ratio increases, both the minimum oil

Fig. 7. Regions of Do=w and Dw=o as defined by the phase inversion curve for the oil–water system of Fig. 1.
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volume fraction that can be continuous and its maximum volume fraction that can be dispersed
increase. For the constant value of gw used in Fig. 8, the ambivalent region is the widest for a
particular value of the viscosity ratio of about ~gg ¼ 0:5. A theoretical analysis for the prediction of
the value of the viscosity ratio for which the width of the ambivalent region is maximal is given in
Appendix B.
The existence of the ambivalent region is not solely attributed to a different free energy of the

pipe surface in the initial and post-inversion dispersions. A similar ambivalent region and a
hysteresis loop can be expected in any system which is associated with the existence of a free
energy term that is independent of the holdup, and exhibit a non-reversible change under phase
inversion. The width of such ambivalent region is predicted to increase as that component of the
system free energy becomes larger compared to the liquids’ interfacial energy. Hence, it widens as
the drops become larger (lower liquids viscosities, lower densities, higher surface tension, lower
Um, smaller tube diameter or smaller kd). The characteristics of such an ambivalent region can be
studied by applying a similar analysis to that given in Appendix B.
The discussion so far referred to pure liquid–liquid systems. In pure systems, the liquids’ surface

tension in the initial dispersion and in the post-inversion dispersion is the same ðrÞ. In such
systems, although the inversion phenomenon is attributed to the change in the liquids’ interfacial
energies, the effect of liquids’ surface tension is predicted to be either minor or totally absent (see
Eq. (21.2)). It is well known, however, that even the slightest impurities contaminate a two-liquid
system. Contaminants, or surfactants accumulate at the liquids’ interface and lower the surface
tension. However, the diffusion process that eventually leads to recontamination of the ‘fresh’
drops surface is typically longer than the inversion process (see for example Ullmann et al., 1995).
Hence, the surface tension of the contaminated drops in the initial dispersion may be lower than
the surface tension of the ‘fresh’ drops formed at phase inversion. Staring with contaminated oil
drops in Do=w with surface tension ro=w < r, and following the derivation of Eqs. (17) to (21.1) and
(21.2), the equivalent of Eq. (21.2) reads:

eIo
1� eIo

¼ ~qq0:6~gg0:4~rr2; ~rr ¼ r
ro=w

> 1 ð26:1Þ

Fig. 8. The effect of the liquids viscosity ratio on the width of the ambivalent region.
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or

eIo ¼
~qq~mm0:4~rr2

1þ ~qq~mm0:4~rr2
ð26:2Þ

Thus, a significantly larger oil holdup may be required to invert a contaminated Do=w into Dw=o
compared to the critical oil holdup obtained in a pure system. On the other hand, when con-
taminated water drops in Dw=o with rw=o < r, invert into Do=w, the equivalent of Eqs. (21.1) and
(21.2) reads:

eIo ¼
~qq~mm0:4~rr�2

1þ ~qq~mm0:4~rr�2 ; ~rr ¼ r
rw=o

> 1 ð27Þ

In this case, the oil holdup should be lowered well below the critical holdup corresponding to pure
liquids in order to invert the system back to Do=w. Hence, a wide hysteresis gap can be obtained in
contaminated oil–water systems, even in large diameter pipes (or large containers), where the
surface energy due to liquid/solid contact is negligible. This analysis suggests an explanation to the
experimental findings that the presence of contaminates (or surfactants) affects a greater resistance
of the system to inversion and considerably increase the limits of ambivalence (e.g. Groeneweg
et al., 1998).
Eqs. (26.2) and (27) also demonstrate the fact that when emulsifier is present, it has a con-

trolling effect, which may overshadow the effect of the liquids viscosity ratio and density ratio. It is
worth emphasizing, however, that the stabilizing effect of emulsifiers can be much more complex.
For instance, effects such as relative partial solubility of the emulsifier in the two phases, its
contribution to the formation of an electrical double layer of charge at the interface, and for-
mation of a rigid (or semi-rigid) interfacial film, give rise to additional terms of the free energy
that have to be accounted for. In this context, the ‘‘surfactant affinity difference’’, which represents
the difference between the chemical potentials of a surfactant in the oil and water phases, can be
useful for quantifying the physico-chemical properties of oil/water/surfactant systems and their
effect on inversion (Salager et al., 2000). Similarly, the presence of solute, which is not in equi-
librium in both phases, may change the free energy of the pre- and post inversion dispersions.
Obviously, the inclusion of such additional terms would alter the predicted critical conditions for
inversion and the limits of ambivalence.

5. Phase inversion in static mixers

Phase inversion in liquid–liquid systems flowing in a pipe containing an in-line motionless
mixer was studied by Tidhar et al. (1986). Mixing elements made of stainless steel and identical
elements coated with a film of Teflon were used to study the effect of the liquids/solid surface
wetting properties on the critical holdup for inversion. That study indicated a strong influence of
the surface material on the phase inversion phenomenon. Indeed, static mixtures are associated
with large liquid/surface contact area (large s in Eq. (17)), whereby the liquids/surface wettability
is expected to have a significant effect on the critical holdup.
Although, the homogeneous and isotropic turbulence assumptions may not be valid for the

flow through static mixers, the Hinze (1955)–Kolmogorov (1949) approach has been found an
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appropriate framework for characterizing the experimental data of drop sizes (Middleman, 1974;
Tidhar et al., 1986). Following this thrust, the derivation of the model for dmax in dilute and dense
dispersions formed in a static mixer, follows the same route of that used for obtaining Eqs. (7.1)
and (7.2) (see Brauner, 2001). However, the expression introduced for the energy dissipation (per
unit volume of the continuous phase), ec accounts for the higher contact area between the con-
tinuous phase and the surface of the mixing elements, whereby:

ec ¼
DP
DL

Uc
qcð1� edÞ

¼ 1
2

qm
qcð1� edÞ

sfcU 3
c ð28:1Þ

or

ec ¼ 2
qm

qcð1� edÞ
fc
U 3
c

Dh
; Dh ¼

4

s
ð28:2Þ

where Uc ¼ 4ðQd þ QcÞ=ðpD2esÞ, and es is the mixing elements’ void fraction. Eq. (28.2) introduces
the hydraulic diameter, Dh as the characteristic length scale, replacing D in pipe flow. Accordingly,
the models for ðdmaxÞo and ðdmaxÞ� (Eqs. (7.1) and (7.2) are applicable to a static mixer with Dh
replacing D everywhere. Hence, the characteristic drop size in Do=w, do and that in Dw=o, dw
(needed in Eq. (17)) are given by:

~ddo ¼
do
Dh

¼ 7:61 ~CCH
r

qwDhU 2
m

� �0:6 qwUmDh
gw

� �0:08 qw
qm

� �0:4 e0:6o
ð1� eoÞ0:2

ð29:1Þ

~ddw ¼ do
Dh

¼ 7:61 ~CCH
r

qoDhU 2
m

� �0:6 qoUmDh
go

� �0:08 qo
qm

� �0:4 ð1� eoÞ0:6

e0:2o
ð29:2Þ

Fig. 9 shows the critical holdup predicted for kerosene–water flow in the static mixer used by
Tidhar et al. (1986) in comparison with their data. The upper curve corresponds to the critical
kerosene holdup for the case where stainless steel mixing elements are used (for which the reported
measured contact angle is 56�). The lower curve corresponds to the critical kerosene holdup for
Teflon mixing elements (h ¼ 157�). The reported values of h and Eqs. (29.1) and (29.2) were used
in Eq. (17) (with kd= ~CCH ¼ 5). As shown in the figure, the model prediction follow the experimental
data points confirming the striking difference between the critical kerosene holdup obtained with
the different mixing elements. The region in between the two curves corresponds to Dw=o in case
Teflon elements are used and to Do=w with stainless steel elements. Consistent with the experi-
mental data, the gap between the two inversion curves becomes wider as Um decreases. For high
Um, both curves approach asymptotically the critical holdup obtained for h ¼ 90� (no solid sur-
face energy), since the surface energy of the mixing elements becomes negligible in comparison to
the oil–water interfacial energy associated with the small drops formed at high Um. The asymp-
totic value predicted for the kerosene–water system is eIo ¼ 0:53.
It is worth noting that Tidhar et al. (1986) reported on very narrow ambivalent ranges, for each

of the two mixers, (indicated by the difference between the open and bold symbols in the figure)
that vanish at high velocities. This ambivalence has been characterized by oscillations between oil-
continuous and water-continuous configurations which were observed in the flow. The narrow
ambivalent range suggests that the rewetting in static mixers is relatively fast.
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6. Conclusions

The criterion of the minimum of the system free energy is employed for predicting the con-
ditions under which phase inversion will occur in dispersed two-phase flow systems. The criterion
is applied in the range of operational conditions where both the initial dispersion and the post
inversion dispersion are judged to be stable in view of a dynamical stability criterion. According to
these criteria, when a dispersion structure (say Do=w) is associated with higher free energy than that
obtained with an alternate structure (say Dw=o), it will tend to change its structure and eventually
reach the one associated with the lowest energy. This hypothesis by itself does not suggest the
pertinent dynamical mechanisms by which this transformation occurs. Once such mechanism(s) is
identified and modeled, one may be able to follow the dynamics of the transition and in general,
one thus has a predictive tool for the phenomenon involved. Such an approach has not been
attempted in this study. However, the suggested criteria predict under which conditions phase
inversion is expected to occur.
The evaluation of the dispersions free energy requires the availability of models for predicting

the characteristic drop size in dense dispersions and its variation with the holdup. This study uses a
recent model suggested by Brauner (2001). It is shown that combining this model for drop size in a
coalescing, dense dispersion with the criterion of minimum system free energy, yields a model for
the critical holdup corresponding to phase inversion, which provides explanations for the exper-
imentally observed features related to phase inversion in pipe flow and in static mixers. These
include the effects of the liquids physical properties, liquid/surface wettability (contact angle), the

Fig. 9. Effect of liquid/surface wettability on the critical holdup for phase inversion in a static mixer. Comparison of

model prediction with experimental data for water–kerosene system (Tidhar et al., 1986).
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existence of an ambivalent region and the associated hysteresis loop in pure systems and in con-
taminated systems. It is shown that when only the liquids’ interfacial energy is involved, and the
hydrodynamic flow field is similar in the initial and post inversion dispersions, the details of the
flow field and the system geometry are not required for predicting the critical holdup at inversion.
Comparisons of the model predictions with experimental data on phase inversion available

from the literature show that this model provide a rather simple quantitative tool for evaluating
various aspects related to this complicated phenomenon.

Appendix A. Phase inversion in highly viscous oil–water systems

When a highly viscous oil forms the continuous phase, the flow is usually laminar. In laminar
pipe flow, the model of Taylor (1964) and Acrivos and Lo (1978) for breakup of long slender
droplets in an axisymmetric straining motion can be applied to estimate the characteristic drop
size. According to this model for gd=gc 
 1:

dmax
D

¼ 0:296 r

gcc
�
D

gc
gd

� �1=6
ðA:1Þ

where c
�
is the strain rate in the continuous phase. In laminar pipe flow, the velocity gradient is a

linear function of the radial distance. The average value of c
�
is c

� ¼ 4Um=D, whereby Eq. (A.1)
yields the following expression for the maximal size of water drops dispersed in a continuous
laminar viscous oil flow:

~ddw ¼ dw
D

¼ 0:074 r
goUm

go
gw

� �1=6
ðA:2Þ

where goUm=r is the capillary number of the oil phase. Eq. (A.2) is applicable in dilute Dw=o, since
the effect of the dispersed phase holdup on the drop size (as accounted in (7.2)) is not included in
the model derivation. When Eq. (A.2) is used in Eqs. (18.1) and (18.2) (instead of Eq. (19.2)) the
critical oil phase holdup is obtained from the following equation:

eIo
� �0:4
1� eIo
� �0:8 ¼ 105 ~CCH kdð Þw=o

kdð Þo=w
g0:087w g5=6o

q0:12w q0:4m r0:4 D0:52 U 0:12
m

ðA:3Þ

In view of Eq. (A.3), due to the different mechanisms of drops breakup in the turbulent flow of
Do=w, and in laminar flow of Dw=o, the value of eIo is dependent on the flow field and on all relevant
liquids properties. In particular, eIo increases with increasing the oil viscosity (rather than the
viscosity ratio) and decreases with increasing the surface tension and the tube diameter. The
variation with Um is rather mild. The critical oil holdup predicted by Eq. (A.3) is demonstrated in
Fig. 10) for Um ¼ 2 m/s and D ¼ 0:04 m, for which case the continuous oil phase is laminar for
go > 0:3 cp ð~gg ¼ 30Þ. The results were obtained assuming ðkdÞo=w ¼ ðkdÞw=o (the effect of different
values of these parameters and other constant coefficients used in the model are represented by
varying the numerical value of the constant, ~CCH). As shown in this figure, this model predicts a
steeper increase of the critical oil holdup with increasing the oil viscosity. However, the appli-
cability of the model for eIo 
 1 is questionable, since for low eIo the water-in-oil dispersion is not
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dilute. More data of the critical oil holdup at phase inversion in pipe flow of viscous oils (which is
not affected by the pre-mixing device) is needed to test these models.
Another modification of the model, which has to be considered in case of a highly viscous oil

concerns the effect of the oil viscosity on the drop size in Do=w. Eqs. (6.1) and (6.2) (and thus, Eq.
(19.1)) has been derived assuming that the main force resisting drop breakage is the surface force
due to surface tension and predicts that dmax is independent of the dispersed phase viscosity.
However, for viscous oils or in systems of low surface tension, additional stabilizing force due to
the drop viscosity evolves and results in an increase of dmax with increasing gd. According to Hinze
(1955), the viscosity effect is represented by the Ohnesorge number, On ¼ gd=ðqdrdmaxÞ

0:5
. For a

non-vanishing On, Eqs. (6.1), (6.2) and (19.1) should be augmented by a term ½1þ f ðOnÞ�0:6,
whereby the r.h.s. of Eqs. (20), (24) and (A.3) are also augmented by this term.
Instead, the correction suggested by Davies (1987) can be applied by multiplying these equa-

tions by ð1þ Kggdu
0
c=rÞ

0:6
, with Kg ¼ Oð1Þ. The turbulent fluctuation velocity in the continuous

phase, u0c is given by Eq. (4) in Brauner (2001). Note that in the model for ðdmaxÞ�, this corrrection
term evolves when the energy balance used for deriving ðdmaxÞ� is modified to account for the
additional viscous dissipation rate in the dispersed phase (on top of the rate of surface energy
production) required for maintaining the dispersion. Such a modification would affect a steeper
increase of the predicted eIo with increasing go in systems of ldu

0
c=r > 1.

The significance of the inclusion of the above correction in the inversion model is tested against
the data of Merchuk (2001) for phase inversion in a Water/PEG40000/Phosphate system, obtained
in a vortex tube, D ¼ 1:3 cm. The surface tension between the two liquid phases in this system is
very low, r < 1 dyne/cm. The results are summarized in Table 1. It is shown that the critical holdup
predicted without the correction due to the dispersed phase viscosity (Kg ¼ 0, namely Eq. (21.2))

Fig. 10. Comparison of the critical oil cut predicted by the model based on laminar and dilute Dw=o (Eq. (A.3)) with
experimental data.
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underpredicts the experimental values. The underprediction becomes more pronounced as the
surface tension decreases. With the inclusion of the correction term, the predictions are in good
agreement with the data. The results for Kg 6¼ 0 were obtained with Um ¼ 4 m/s ðRe2 � 2500Þ. The
effect of Um is however very mild (increasing Um by a factor of 2 reduces eI2 by about 1%).
It is to be noted further that experimental studies in stirred-tank contractors (Wang and

Calabrese, 1986) indicate that the effect of viscous resistance of the dispersed phase can be ignored
for Vi ¼ ðgdNDI=rÞ qc=qdð Þ1=2 
 We1=5c . For a typical oil water-system with qc ’ qd, r ¼ 30 dyne/
cm and Umð� NDIÞ ¼ 2 m/s, this corresponds to go ’ 100 cp.

Appendix B.

The value of the viscosity ratio for which the width of the ambivalent region (e�o � eþw) attains a
maximum, corresponds to the conditions for which the following Lagrangian is maximal:

L ¼ e�o
�

� eþo
�
þ k1F e�o

� �
þ k2F eþo

� �
ðB:1Þ

where e�o and eþo are the critical oil holdup obtained with hydrophilic surface and hydrophobic
surface respectively, and k1, k2 are the Lagrangian multipliers. The constraints F ðe�o Þ, F ðeþo Þ results
from Eq. (16) when combined with Eqs. (19.1) and (19.2). For hydrophilic wall ðh ¼ 0Þ:

F e�o
� �

¼ �1þ b1 e�o
� �0:4

1
�

� e�o
�0:2 � b2 1

�
� e�o

�0:4
e�o
� �0:2 ðB:2Þ

and for hydrophobic wall ðh ¼ 180�Þ:

F eþo
� �

¼ þ1þ b1 eþo
� �0:4

1
�

� e�o
�0:2 � b2 1

�
� eþo

�0:4
eþo
� �0:2 ðB:3Þ

where

b1 ¼ 0:788 ~CC�1
H kdðDsÞ�1We0:6w Re�0:08w

qm
qw

� �0:4
ðB:4Þ

b2 ¼ 0:788 ~CC�1
H kdðDsÞ�1We0:6o Re�0:08o

qm
qo

� �0:4
ðB:5Þ

Given the operational conditions and the physical properties of the aqueous phase (b1 is specified),
the extremum of L can be explored by solving the following system of five equations, which
represent the conditions for which the Lagrangian defined in Eq. (B.1) is maximal:

Table 1

Effect of ½1þ kgðgdu0rÞ� correction—comparison with data
q ðg=cm3Þ g (cp) r (Dyne/cm) Exp. �I2 Predicted �I2

q1 q2 q2=q1 g1 g2 g2=g1 Kg ¼ 0 Kg ¼ 0:7 Kg ¼ 1:0
1.1739 1.0861 0.925 2.095 28.3 13.51 0.62 0.85–0.97 0.73 0.86 0.90

1.1693 1.0790 0.923 2.035 22.3 10.95 0.44 0.86–0.91 0.71 0.84 0.89

1.1410 1.0908 0.956 1.880 21.5 11.44 0.29 0.85–0.92 0.72 0.89 0.95

1.1433 1.0850 0.949 1.930 13.55 7.02 0.15 0.89–0.96 0.68 0.86 0.93
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oL
ok1

¼ �1þ b1 e�o
� �0:4

1
�

� e�o
�0:2 � b2 1

�
� e�o

�0:4
e�o
� �0:2 ¼ 0 ðB:6Þ

oL
ok2

¼ 1þ b1 eþo
� �0:4

1
�

� eþo
�0:2 � b2 1

�
� eþo

�0:4
eþo
� �0:2 ¼ 0 ðB:7Þ

oL
oe�o

¼ 1þ 0:2k1

e�o 1� e�o
� �� �0:6 b1

2� 3e�o
� �
1� e�o
� �0:2

"
� b2

1� 3e�o
� �

e�o
� �0:2

#
¼ 0 ðB:8Þ

oL
oeþo

¼ �1þ 0:2k2

eþo 1� eþo
� �� �0:6 b1

2� 3eþo
� �
1� eþo
� �0:2

"
� b2

1� 3eþo
� �

eþo
� �0:2

#
¼ 0 ðB:9Þ

oL
ob2

¼ k1 e�o
� �0:2

1
�

� e�o
�0:4 þ k2 eþo

� �0:2
1
�

� eþo
�0:4 ¼ 0 ðB:10Þ

The five unknowns are: e�o , e
þ
o , k1, k2 and b2. The solution indicates that the maximal width of the

ambivalent region corresponds to a constant value of the ratio b2=b1 ¼ 0:944 ¼ ~gg0:08 (assuming
~qq ’ 1), which yields ~gg ¼ 0:49 (for ~gg ¼ 1; b2=b1 ¼ 0:944 corresponds to ~qq ¼ 0:62).
It is worth noting, however, that while the maximal width corresponds to a particular b2=b1

ratio, its magnitude depends on b1 (and b2). The width of the ambivalent region increases as the
value of b1 decreases (almost proportionally to b�11 ). Thus, a wider ambivalent region is obtained
for lower liquids viscosities, lower densities, higher surface tension, lower Um, smaller tube
diameter or smaller kd.
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